Fiche 02 de révision

TRIGONOMETRIE

Exercice 4

Résoudre les équations trigonométriques suivantes.

1)
$$\cos(2x) = \cos\left(\frac{8\pi}{2}\right)$$
 dans \mathbb{R} puis dans $[\pi; 5\pi]$

2)
$$\sin\left(x - \frac{2\pi}{3}\right) = \sin\left(\frac{\pi}{5}\right)$$
 dans \mathbb{R} puis dans $[-2\pi; 2\pi]$
3) $\cos(3x) = -\cos(x)$ dans \mathbb{R} puis dans $[-2\pi; \pi]$

3)
$$\cos(3x) = -\cos(x)$$
 dans \mathbb{R} puis dans $[-2\pi; \pi]$

4)
$$\sin\left(2x + \frac{\pi}{4}\right) = -\sin(x)$$
 dans \mathbb{R} puis dans $[4\pi; 6\pi]$

5)
$$\sin(3x) = \cos(2x)$$
 dans \mathbb{R}

Exercice 5

Représenter sur un cercle trigonométrique l'ensemble des points M du cercle associés aux réels x vérifiant :

$$1) \quad 0 \le \cos(x) \le 1$$

2)
$$\cos(x) \in \left[\frac{1}{2}; 1\right]$$

3)
$$-1 < \sin(x) < 0$$

2)
$$\cos(x) \in \left[\frac{1}{2}; 1\right]$$

3) $-1 < \sin(x) < 0$
4) $-\frac{1}{2} \le \sin(x) \le 1$

5)
$$\sin(x) \in \left[-\frac{\sqrt{2}}{2}; 0 \right[$$

6)
$$\cos(x) \in \left[-\frac{1}{2}; \frac{\sqrt{3}}{2}\right]$$

Exercice 6

Résoudre à l'aide du cercle trigonométrique les inéquations suivantes :

1)
$$\sin(x) < \frac{1}{2} \text{dans }]-\pi; \pi]$$

2)
$$\cos(x) \ge \frac{1}{2} \text{ dans } [0; 2\pi]$$

2)
$$\cos(x) \ge \frac{1}{2} \text{ dans } [0; 2\pi]$$

3) $\cos(x) > \frac{1}{\sqrt{2}} \text{ dans } [-\pi; 3\pi]$

4)
$$\sin(x) \le \frac{\sqrt{3}}{2} \text{ dans } [-\pi; 2\pi]$$

Exercice 7

Résoudre dans R les équations suivantes

1)
$$2\cos^2(x) + 9\cos(x) + 4 = 0$$

2)
$$4\sin^2(x) - 2(1+\sqrt{3})\sin(x) + \sqrt{3} = 0$$

Exercice 8

- 1) Déterminer les racines éventuelles du trinôme t défini par $t(x) = -4x^2 + (2\sqrt{3} 2)x + \sqrt{3}$.
- Factoriser t(x)
- 3) Etablir dans $[0; 2\pi]$ le signe de $2\cos(x) + 1$ et de $-2\cos(x) + \sqrt{3}$
- 4) En déduire le signe sur $[0; 2\pi]$ de $-4\cos^2(x) + (2\sqrt{3} 2)\cos(x) + \sqrt{3}$.