Plan complexe - Exercices

Géométrie complexe et applications

I - Échauffements

Exercice 1 Dans le plan rapporté à un repère orthonormal,

- a) Placer les points A(2;4) et B(-3,5).
- b) Calculer les coordonnées de \overrightarrow{AB} et la longueur AB.
- c) Calculer les coordonnées du milieu de [AB].
- d) On note A' et A'' les symétriques de A respectivement par rapport à l'axe des abscisses et à l'axe des ordonnées. Donner les coordonnées de A' et A''.
- e) Déterminer les coordonnées des points M tels que AM = BM. Tracer ces points.

Exercice 2 Tracer le cercle trigonométrique et placer sur ce cercle les points associés aux angles

$$\pi, \quad \frac{\pi}{2}, \quad \frac{\pi}{6}, \quad \frac{\pi}{3}, \quad \frac{3\pi}{2}, \quad \frac{2\pi}{3}, \quad \frac{5\pi}{6}$$

Donner pour chaque angle les valeurs exactes de leur cosinus et sinus.

Exercice 3 Simplifier:
$$A = e^2 e^5$$
, $B = e^{2x} e^2 + 3x$, $C = \frac{(e^{3x})^2 e^{-2x}}{e^x}$, $D = e^x \frac{(e^{2x})^3}{e^{8x+1}}$

II - Plan complexe

Exercice 4 Placer les points A, B et C d'affixe respectif : $z_A = -1 - 2i$, $z_B = 4 - i$ et $z_C = \sqrt{2} + \frac{3}{2}i$. Déterminer les longueurs OA, OB et OC et AB.

Exercice 5 Déterminer l'ensemble des points M d'affixe z du plan complexe tels que $Z=z^2+\overline{z}$ soit réel.

Exercice 6 Les points A, B et C ont pour affixe respective -2 + i, 3 + 3i, $1 + \frac{11}{5}i$.

- a) Calculer les affixes des vecteurs \overrightarrow{AB} et \overrightarrow{AC} .
- b) En déduire que les points A, B et C sont alignés.
- c) Placer les points A, B et C.

Exercice 7 Les points A, B et C ont pour affixe respective $1 + \frac{1}{2}i$, $\frac{3}{2} + 2i$ et $-1 - \frac{11}{2}i$. Montrer que les points A, B et C sont alignés.

Exercice 8 On considère dans le plan complexe les points A, B, C et D d'affixes respectives $z_A = 3 + i$, $z_B = 2 - 2i$, $z_C = 2i$ et $z_D = 1 + 5i$. Faire une figure, puis montrer de deux façons différentes que ABCD est un parallélogramme.

Module et argument d'un nombre complexe

Exercice 9 Placer les points dont les affixes sont les complexes suivants, puis en calculer le module et déterminer un argument : $z_1 = 2 + 2i$, $z_2 = 5$, $z_3 = 3i$, $z_4 = -6$, $z_5 = -1 + i$, $z_6 = \sqrt{3} + i$.

Exercice 10 Dans le plan complexe, A, B et C sont les points d'affixes :

$$z_A = 1 + i$$
, $z_B = 4 + 5i$, $z_C = 5 - 2i$.

- 1. Montrer que AB = AC, puis que $(\overrightarrow{AB}; \overrightarrow{AC}) = -\frac{\pi}{2}$.
- 2. Déterminer l'affixe du point K tel que le quadrilatère ABKC soit un rectangle.
- 3. a) Déterminer l'affixe du point G tel que le quadrilatère AGBC soit un parallélogramme.
 - b) Vérifier que B est le milieu du segment [GK].

Exercice 11 Déterminer l'ensemble des points M d'affixe z tels que :

- |z 6i| = 3 |z + 3 2i| < 2 |z + 2| = |z 3i + 1| |2 iz| = |z + 5| $\left| \frac{z + 2i}{z + 1 2i} \right| > 1$

- $\arg(z) = \frac{\pi}{6}$ |z-3| = |z+2i| $|z+1-2i| < \sqrt{5}$ $\left|\overline{z} + \frac{i}{2}\right| = 4$ $\arg(z+i) = \pi$

Exercice 12 Soit A, B et C les trois points d'affixes $z_A = 2i$, $z_B = 2 + i$ et $z_C = 1 - i$. Montrer, de deux manières différentes, que ABC est un triangle rectangle en B.

Forme trigonométrique d'un nombre complexe

Exercice 13 Ecrire sous forme trigonométrique les nombres complexes suivants :

- $z_1 = 3$
- $\bullet \ z_2 = -4 \qquad \bullet \ z_3 = 2i$

- $z_6 = -17$ $z_7 = -6\sqrt{3} + 6i$ $z_8 = 5i$ $z_9 = \sqrt{6} + i\sqrt{2}$.

Exponentielle complexe

Exercice 14 Placer dans le plan complexe et écrire sous formes trigonométrique et algébrique les nombres complexes:

- $3e^{-i\frac{\pi}{2}}$

- $\sqrt{2}e^{3i\frac{\pi}{4}}$ $6e^{-i\frac{2\pi}{3}}$ $5e^{i\frac{5\pi}{3}}$ $2e^{i\frac{\pi}{4}}e^{-i\frac{3\pi}{2}}$ $\frac{3e^{i\frac{\pi}{6}}}{2e^{-i\frac{2\pi}{3}}}$

Exercice 15 Ecrire sous forme trigonométrique et exponentielle les nombres complexes :

- 5

- 4+4i $\frac{3}{2}i$ $\frac{2}{1-i}$ $\sqrt{3}-i$ $(\sqrt{3}-i)^2$ $(\sqrt{3}-i)^3$

Exercice 16 On donne $z_1 = e^{i\frac{\pi}{6}}, z_2 = 3e^{-i\frac{\pi}{3}}, \text{ et } z_3 = \sqrt{2}e^{-i\frac{5\pi}{6}}.$

Donner sous la forme exponentielle puis algébrique les complexes : $z_1z_2z_3$, $\frac{z_1}{z_2z_2}$, z_2^2 , z_3^6 .

Exercice 17 Simplifier l'expression, où $\theta \in \mathbb{R}$, $\left(\frac{e^{i\theta} + e^{-i\theta}}{2}\right)^2 + \left(\frac{e^{i\theta} - e^{-i\theta}}{2i}\right)^2$. Etait-ce prévisible sans calcul?

Exercice 18 Déterminer l'ensemble des points M d'affixe z tels que :

•
$$\arg(z-3) = \frac{\pi}{3}$$
 • $\arg(-2z) = \frac{\pi}{4}$ • $\arg((1+i)z) = 0$ • $\arg\left(\frac{1}{iz}\right) = \pi$

$$\operatorname{arg}((1+i)z) = 0$$
 \bullet $\operatorname{arg}\left(\frac{1}{iz}\right) =$

•
$$|z - 2i| = 3$$
 • $\arg\left(\frac{z+2}{z-2i}\right) = \frac{\pi}{2}$ • $|z+1| = |z-2i|$ • $|z+1-i| = \sqrt{2}$

$$\bullet |z+1-i| = \sqrt{2}$$

Exercice 19 Ecrire le nombre complexe $(\sqrt{3}-i)^{10}$ sous forme algébrique.

Exercice 20 Calculer le module et un argument des complexes suivants, puis les écrire sous formes trigonométrique, exponentielle et algébrique:

$$z_1 = \frac{\sqrt{6} - i\sqrt{2}}{2(1+i)}$$

$$z_2 = \frac{5(-1+i)}{\sqrt{3}+i}$$

Exercice 21

- a) Ecrire sous forme trigonométrique les complexes $z_1 = \sqrt{3} i$, $z_2 = 1 i$, et $Z = \frac{z_1}{z_2}$.
- b) Déterminer la forme algébrique de Z, et en déduire les valeurs exactes de $\cos\left(\frac{\pi}{12}\right)$ et $\sin\left(\frac{\pi}{12}\right)$.

Exercice 22

- a) Ecrire sous forme trigonométrique les complexes $z_1 = -1 i$, $z_2 = \frac{1}{2} \frac{\sqrt{3}}{2}i$, et $Z = z_1 z_2$.
- b) Déterminer la forme algébrique de Z. En déduire les valeurs exactes de $\cos\left(\frac{11\pi}{12}\right)$ et $\sin\left(\frac{11\pi}{12}\right)$.

Exercice 23 On considère l'équation $z^2 - 2\cos(\theta)z + 1 = 0$, où θ est un réel donné dans $[0; 2\pi]$.

- a) Vérifier que le discriminant de cette équation est $\Delta = -4\sin^2(\theta)$.
- b) Résoudre alors dans \mathbb{C} l'équation proposée, en discutant suivant les valeurs de θ , en donnant les solutions sous formes exponentielle.

Exercice 24 Ecrire sous forme exponentielle les solutions de : $z^2 - 2z \sin^2 \alpha + \sin^2 \alpha = 0$.

Exercice 25

- a) Donner sous forme exponentielle les solutions de l'équation : $z^2 + z + 1 = 0$.
- b) Soit α un réel donné. Factoriser l'expression : $z^2 e^{2i\alpha}$
- c) En déduire les solutions de l'équation : $z^4 + z^2 + 1 = 0$.

Exercice 26 Résoudre dans \mathbb{C} l'équation $z^4 + 4z^2 - 21 = 0$.

Exercice 27 On considère l'équation du second degré (E): $z^2 + (1 + i\sqrt{3})z - 1 = 0$.

- 1. Déterminer le discriminant Δ de cette équation. Écrire Δ sous forme exponentielle.
- 2. Donner un nombre complexe δ tel que $\delta^2 = \Delta$. Écrire δ sous forme algébrique.
- 3. Vérifier que les formules usuelles du second degré, $z_1 = \frac{-b-\delta}{2a}$ et $z_2 = \frac{-b+\delta}{2a}$ donnent bien deux solutions de (E).

Exercice 28 (Formules trigonométriques)

Soit θ et θ' deux réels quelconques.

En exprimant de deux manières différentes le complexe $e^{i\theta}e^{i\theta'}$, exprimer $\cos(\theta + \theta')$ et $\sin(\theta + \theta')$ en fonction des cosinus et sinus de θ et θ' .

Exprimer de la même façon $\sin(2\theta)$ et $\cos(2\theta)$.

Exercice 29 En utilisant la notation exponentielle complexe et/ou les formules trigonométriques, exprimer en fonction de cos(x) et sin(x) les valeurs de :

• $\cos\left(x + \frac{\pi}{2}\right)$ • $\sin\left(x + \frac{\pi}{2}\right)$ • $\cos\left(\frac{\pi}{2} - x\right)$ • $\sin\left(\frac{\pi}{2} - x\right)$

• $\cos(x+\pi)$ • $\sin(x+\pi)$ • $\cos(\pi-x)$ • $\sin(\pi-x)$

Exercice 30

1. a) Calculer $\frac{\pi}{3} - \frac{\pi}{4}$ et en déduire la valeur exacte de $\cos\left(\frac{\pi}{12}\right)$.

b) Déterminer la valeur exacte de $\cos\left(\frac{\pi}{12}\right)$ en remarquant que $\frac{\pi}{6} = 2 \times \frac{\pi}{12}$.

2. Exprimer $\frac{5\pi}{12}$ en fonction de $\frac{\pi}{6}$ et $\frac{\pi}{4}$. Déterminer alors les valeurs exactes de $\cos\left(\frac{5\pi}{12}\right)$ et $\sin\left(\frac{5\pi}{12}\right)$.

Exercice 31

1. x est un nombre réel. Ecrire la forme algébrique et la forme exponentielle de $\left(\frac{\sqrt{3}}{2} - \frac{i}{2}\right)e^{ix}$.

2. Utiliser la question précédente pour résoudre dans] $-\pi$; π [l'équation $\sqrt{3}\cos(x) + \sin(x) = \sqrt{2}$.

Exercice 32 Factorisation par l'angle moitié.

a) Factoriser e^2x dans la somme $e^x + e^{3x}$.

b) Résoudre alors dans l'intervalle $]-\pi;\pi]$ l'équation : $\cos(x)+\cos(3x)=0$.

c) Résoudre de la même façon, dans l'intervalle $]-\pi;\pi]$, l'équation : $\sin(2x)+\sin(6x)=0$.